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We consider the properties of a self-avoiding polymer chain with nearest- 
neighbor contact energy e on a d-dimensional hypercubic lattice. General 
theoretical arguments enable us to prescribe the exact analytic form of the 
n-segment chain partition function Cn, and unknown coefficients for chains of 
up to 11 segments are determined using exact enumeration data in d=  2-6. This 
exact form provides the main ingredient to produce a large-n expansion in d -  
of the chain free energy through fifth order with the full dependence on the 
contact energy retained. The e-dependent chain connectivity constant and free 
energy amplitude are evaluated within the d -1 expansion to O(d-5). Our 
general formulation includes for the first time self-avoiding walks, neighbor- 
avoiding walks, theta, and collapsed chains as particular limiting cases. 

KEY WORDS:  Lattice model of polymers; self-avoiding walk; self-inter- 
acting walk; neighbor-avoiding walk; connectivity constant. 

1. i N T R O D U C T I O N  

Orr's pioneering work (1) studies the lattice model of a single polymer chain 
with excluded volume and nearest-neighbor contact interactions. This 
lattice model describes a flexible linear polymer as a self-avoiding random 
walk (SAW) on a regular d-dimensional lattice. The lattice model of 
polymers is very rich and completely describes the interesting temperature 
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and molecular weight dependence of a dilute polymer solution. (2'3) For 
example, as the contact energy e increases in absolute value, the chain con- 
tracts. When e reaches some critical value e0 (the Flory 0 point), the effects 
of the repulsive (excluded volume) and attractive (contact) interactions 
cancel to a large extent. More negative e causes the chain to collapse into 
a condensed state (the collapse transition). Positive e corresponds to 
enhanced repulsion between neighboring nonsequential monomers, and a 
neighbor-avoiding walk (NAW) is obtained in the e -~ oo limit. Orr uses an 
exact enumeration method to evaluate the exact e-dependent n-bond parti- 
tion function Cn for chains with up to n = 8 (n = 6) bonds on a square 
(simple cubic) lattice and to extrapolate the results to the large-n limit. 

The lattice model of polymer solutions has also been widely studied 
using a variety of numerical and analytic techniques. In particular, direct 
enumeration ~4-7) and Monte Carlo methods (s 11) have been employed to 
evaluate, for example, the free energy per segment and other thermo- 
dynamic properties of SAWs, NAWs, theta chains, and the collapse 
transition. (4) A very extensive literature is devoted to describing the univer- 
sal critical properties of these walks. (3 12) Analytical approximations to the 
lattice model of polymers are likewise numerous. In particular, the classic 
Flory-Huggins mean-field approximations (2'3) to the chain free energy is 
perhaps the most widely used theory in polymer science. Recently, the 
lattice cluster theory (13 16) (LCT) has enabled the systematic improvement 
of the Flory-Huggins approximation and has been employed to study a 
variety of lattice polymer thermodynamic properties. 

Fisher and Gaunt (17) have derived an expansion of the lattice 
self-avoiding walk partition function in powers d-1 up to fifth order. They 
calculate the chain connectivity constant /~ and the susceptibility critical 
index ~ and study the dependence of these quantities on the spatial dimen- 
sionality d. In the process of calculating the d 1 expansion, ref. 17 obtains 
the exact n-bond SAW partition function C saw for short chains with up to 
n = 11 bonds in any. dimension. They express C saw in terms of lower-order 
walks, polygons, simple and star figure eights, and dumbbells. These 
recurrence relations are obtained by adding one bond to an n-bond SAW, 
thus forming either an (n + 1)-step self-avoiding walk, a tadpole, or a 
polygon (closed walk). 

Ref. 17 also discuss a d -1 expansion for the critical temperature of the 
spin-l/2 Ising model with nearest-neighbor interactions. The further exten- 
sion (18) to the classical N-vector model encompasses the self-avoiding walk, 
the Ising, and the spherical models as particular cases. A variety of lattice 
problems, such percolation processes, (19) lattice animals, (19'2~ and dense 
self-avoiding self-interacting walks, (13 16) have been analyzed with diagram- 
matic d 1 expansion methods to obtain the (nonuniversal) critical points 
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and critical amplitudes. On the other hand, Gaunt  e taL (2~) study lattice 
trees with specified topologies and generate d -~ expansions for the tree 
connectivity constants using low-dimensional computer enumeration data. 4 
In particular, they (21) evaluate # for a neighbor-avoiding walk through 
third order. All of the available expansions in d -1 appear to be 
asymptotic, s as are the 4 - d  expansions in the renormalization group 
theory of critical phenomena. {24) 

This paper incorporates ingredients from the work of Orr, (~) Fisher 
and Gaunt, (~7} Gaunt  etaL, (21) and the lattice cluster theory (x3--16) to 
produce a calculational scheme that fully includes the temperature 
dependence (i.e., 8) in the d-dimensional lattice model of dilute polymers 
and that enables all coefficients to be determined from computer enumera- 
tion data in lower dimensions. Section 2 evaluates the exact e-dependent 
partition function Cn for n ~< 11 in any dimension. This result represents a 
considerable generalization of the classic work of refs. 1 and 17. SAWs, 
NAWs, theta, and collapsed chains are particular limiting cases of our 
general expression. The lengthy evaluation of many-body diagrams is not 
required to produce the exact short-chain d-dimensional partition fimction 
or the d -1 expansion of C, in the large-n limit. Instead, we utilize only 
computer direct enumeration data in dimensions through 6. Section 3 
rewrites C,, in a form valid for a//n ~< 11, and this leads naturally to a d-  l 
expansion that is valid in the large-n limit. Section 4 derives a d-1 expan- 
sion for the free energy per segment through order d -s but to all orders 
in e. The chain connectivity constant # and the free energy amplitude A 
are presented in Section 5 as series in d -~ to O(d-S) .  Also, # and A are 
determined in particular limiting cases such as the SAW (e=0),  NAW 
(e= oo), and 0' chain. [A continuum limit estimate of the theta point 
starting from the lattice model of interacting SAWs indicates {2s) 
f =  e x p ( - e / k T ) - 1  ,~ a -~ with cr = 2 d - 1  near the theta point. We thus 
define a 0' chain by taking f={ r -1 . ]  

2. THE EXACT PARTITION FUNCTION FOR SHORT 
SELF-AVOIDING CHAINS WITH CONTACT INTERACTIONS 
IN ANY DIMENSION 

The self-avoiding random walk with nearest neighbor contact interac- 
tions on d-dimensional hypercubic lattices is composed of n + 1 monomers 

4 Computer  enumerat ion data was used to produce a d -~ expansion in some percolation 
problems. See, e.g., Gaunt  and Ruskin. (22) 

s Ref. 18 shows that the d -~ expansion for the critical temperature of the N-vector model in 
the N--* cc limit (the spherical model) is asymptotic, and suggests that truncation after the 
term of the order d -a with 2 = 1.62d is optimal. 
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joined by n bonds. An energy e is assigned to each pair of monomers that 
are nearest neighbors on the lattice but are nonsequential along the chain. 
The energy may either be negative (attractive) or positive (repulsive)J 1) 
Only hypercubic lattices are considered (i.e., square lattices in d = 2, simple 
cubic lattices in d = 3 ,  etc.), but the extension to other lattices is 
straightforward. The model is illustrated in Fig. 1. 

The lattice coordination number q is 

q = a +  1 = 2 d  (1) 

which also defines o-. The n-bond partition function Cn is defined as usual 
a s  (3) 

C,,= Z C,,,m~/~ (2) 
m = 0  

where q is the Boltzmann factor 

q = exp co, co = - e / k T  (2a) 

and where C,,,, is the number of configurations of an n-bond self-avoiding 
chain with m neighbor contacts. It is usually assumed that the large-n 
asymptotic behavior of Cn is of the form ~3) 

C,, ~ Aff'~n ~-- 1 (3) 

where 7, #, and A are the q-dependent effective critical exponent, connec- 
tivity constant, and free energy amplitude, respectively. [ / ~ = e x p ( - @ ) ,  

I f I 
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Fig. 1. Typical configuration of an n-segment self-interacting SAW on a square lattice. 
Nearest-neighbor sites that are not  consecutive along the chain (indicated by dashed lines 
connecting both sites) interact with a contact energy e. Periodic boundary conditions are 
assumed along all directions. 
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with Y the dimensionless free energy per segment in the n--, ~ limit.] 
Temperature dependences enter in (2) only through the factors oft/. 

The quantity Cn is easily evaluated by direct enumeration for very 
short chains of n = 1, 2 .... bonds. For  example, the n = 1 and 2 cases yield 

,4a, 

The factors of q and a emerge in the middle of (4) because the first bond 
may be placed with q choices, Since walks cannot return to a previously 
visited site, the second bond only has cr = q - 1  choices. Alternatively, the 
above results may be obtained as follows: a one-step walk may only extend 
in one dimension. The factorial in the right-hand side of (4a) is the number 
of ways of choosing a given direction (Xl, x2,..., xa) for this bond. The 
factor 2 appears because there are two possible orientations (along the 
positive or negative axis) for the bond. A two-step walk can either fully 
extend along a single direction, or it can occupy a two-dimensional sub- 
space. The number of configurations with the walk lying in a single direc- 
tion is also 2d = q as for a one-step walk. In fact, this result holds for chains 
of any length. The number of configurations that fully occupy two dimen- 
sions is eight, as the first bond may be placed with four directional choices, 
while the second has only two because it must be in an orthogonal direc- 
tion to the first bond. The second factorial on the right-hand side of (4b) 
is the number of ways of choosing a plane in a d-dimensional space. 

Similarly, for n = 3 we find 

C3= [qaZ-q(a  - 1)] + q ( a -  1)q 

which is easily obtained as follows: The total number of configurations of 
a three-link self-avoiding chain on a d-dimensional hypercubic lattice is 
q~2. The number of one-contact configurations is q (q -2 ) ,  since the first 
bond has 2d choices, the second bond, which must be orthogonal to the 
first one, has q -  2, while the third segment just has a single choice (it must 
be parallel to the first bond). Hence [qaZ-q(cr  - 1)] gives the total num- 
ber of walks without contacts, while the q(a-1)~ / term is the contributibn 



1088 Nemirovsky et al. 

Table I. Number  of Configurat ions C.,m for Linear 

n C.,o C.,~ C.,2 C.,3 C.,4 C.,5 

d = 2  

1 4 0 0 0 0 0 
2 12 0 0 0 0 0 
3 28 8 0 0 0 0 
4 68 32 0 0 0 0 
5 164 88 32 0 0 0 
6 396 256 128 0 0 0 
7 940 736 344 152 0 0 
8 2244 2032 1072 528 40 0 
9 5324 5376 3400 1384 784 0 

10 12,668 14,224 9832 4608 2384 384 
11 29.940 36,976 27,600 15,552 6424 3552 

d = 3  

1 6 0 0 0 0 0 
2 30 0 0 0 0 0 
3 126 24 0 0 0 0 
4 534 192 0 0 0 0 
5 2214 1032 288 0 0 0 
6 9246 5376 2112 192 0 0 
7 38,142 26,688 11,928 4488 0 144 
8 157,974 128,880 66,192 29,424 4632 864 
9 649,086 605,664 353,544 168,504 65,472 7680 

10 2,675,022 2,802,576 1,817,208 956,832 412,416 116,928 
11 10,966,470 12,755,136 9,092,592 5,269,920 2,435,256 1,059,120 

d = 4  

1 8 0 0 0 0 0 
2 56 0 0 0 0 0 
3 344 48 0 0 0 0 
4 2120 576 0 0 0 0 
5 12,872 4752 960 0 0 0 
6 78,392 36,864 11,136 768 0 0 
7 472,952 271,680 98,256 27,792 0 576 
8 2,861,768 1,931,808 820,896 289,632 36,336 5760 
9 17,223,224 13,384,320 6,523,248 2,587,248 777,120 87,168 

10 103,835,096 91,133,664 49,672,560 22,079,616 7,785,120 1,843,968 
11 623,927,912 610,863,072 367,817,184 180,499,968 71,331,408 25,164,288 
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Chains with n Bonds and m Contacts in d =  2-6 

C~,6 CA, 7 C~,8 C~,9 C saw C~ ~Rw 

0 0 0 0 4 4 
0 0 0 0 12 12 
0 0 0 0 36 36 
0 0 0 0 100 108 
0 0 0 0 284 324 
0 0 0 0 780 972 
0 0 0 0 2172 2916 
0 0 0 0 5916 8748 
0 0 0 0 16,268 26,244 
0 0 0 0 44,100 78,732 

248 0 0 0 120,292 236,196 

0 0 0 0 6 6 
0 0 0 0 30 30 
0 0 0 0 150 i50 
0 0 0 0 726 750 
0 0 0 0 3534 3750 
0 0 0 0 16,926 18,750 
0 0 0 0 81,390 93,750 
0 0 0 0 387,966 468,750 

3936 0 0 0 1,853,886 2,343,750 
24,288 4608 0 0 8,809,878 11,718,750 

257,880 94,272 0 3 5 0 4  4 1 , 9 3 4 , 1 5 0  58,593,750 

0 0 0 0 8 8 
0 0 0 0 56 56 
0 0 0 0 392 392 
0 0 0 0 2696 2744 
0 0 0 0 18,584 19,208 
0 0 0 0 127,160 134,456 
0 0 0 0 871,256 941,192 
0 0 0 0 5,946,200 6,588,344 

31,488 0 0 0 4 0 , 6 1 3 , 8 1 6  46,118,408 
345,216 55,296 0 0 2 7 6 , 7 5 0 , 5 3 6  322,828,856 

5,442,192 1,610,880 85,248 4 2 , 0 4 8  1,886,784,200 2,259,801,992 
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Table I. 

n Cn,o C.,1 C~,2 C.,3 C.,4 C.,5 

d=5 

1 10 0 0 0 0 0 
2 90 0 0 0 0 0 
3 730 80 0 0 0 0 
4 5930 1280 0 0 0 0 
5 47,690 14,320 2240 0 0 0 
6 384,090 148,480 35,840 1920 0 0 
7 3,075,610 1,459,840 433,040 95,600 0 1440 
8 24,663,210 13,835,680 4,862,560 1,389,600 135,760 20,160 
9 197,117,210 127,784,640 51,759,280 17,005,840 4,048,960 393,600 

10 1,576,845,050 1,158,460,000 527,313,040 195,416,640 56,686,400 10,919,040 
11 12,589,411,530 10,342,876,480 5,218,528,800 2,143,264,320 708,980,560 204,737,760 

d=6 

1 12 0 0 0 0 0 
2 132 0 0 0 0 0 
3 1332 120 0 0 0 0 
4 13,452 2400 0 0 0 0 
5 134,892 33,960 4320 0 0 0 
6 1,353,732 441,600 88,320 3840 0 0 
7 13,536,612 5,436,960 1,357,800 244,200 0 2880 
8 135,457,932 64,509,840 19,183,440 4,573,680 361,560 51,840 
9 1,352,852,292 745,845,120 256,222,200 71,229,720 13,934,640 1,207,680 

10 13,517,235,732 8,461,348,080 3,274,749,720 1,030,869,120 251,783,280 40,740,480 
11 134,908,128,732 94,558,053,840 40,628,931,120 14,200,593,600 3,996,066,600 972,131,040 

to C 3 from single contacts.  Figure 2 depicts all no-contact  and single- 
contact  chain configurations contr ibuting to the part i t ion function for 
n =  3, and the caption explains the alternative form of expressing C3. 
Direct count ing can also be applied to longer chains. However,  as is well 
known,  it becomes impractical for n about  5 or 6, and computer  assistance 
is required. 

The part i t ion function Cn, m in any dimension can, in general, be 
written as 

/=1 

Equat ion  follows because the total number  of configurations for chains 
with n bonds  and m contacts  on d-dimensional hypercubic lattices may be 
computed  by summing the polymer  configurations [2q!  p.,..](t) that  only 
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n C.,6 C., 7 C.,8 C.,9 C saw C~ RRw 

0 0 0 0 10 10 
0 0 0 0 90 90 
0 0 0 0 810 810 
0 0 0 0 7210 7290 
0 0 0 0 64,250 65,610 
0 0 0 0 570,330 590,490 
0 0 0 0 5,065,530 5,314,410 
0 0 0 0 44,906,970 47,829,690 

118,080 0 0 0 398,227,610 430,467,210 
1,821,120 230,400 0 0 3,527,691,690 3,874,204,890 

37,732,880 9,358,080 426,240 175,200 31,255,491,850 34,867,844,010 

0 0 0 0 12 12 
0 0 0 0 132 132 
0 0 0 0 1452 1452 
0 0 0 0 !5,852 15,972 
0 0 0 0 173,172 175,692 
0 0 0 0 1,887,492 1,932,612 
0 0 0 0 20,578,452 21,258,732 
0 0 0 0 224,138,292 233,846,052 

314,880 0 0 0 2,441,606,532 2,572,306,572 
6,234,240 645,120 0 0 26,583,605,772 28,295,372,292 

156,415,560 33,870,720 1,278,720 490,560 289,455,960,492 311,249,095,212 

span I dimensions with 1 ~< l<<.n, multiplied by the number of ways (J) of 
selecting l dimensions in a d-dimensional space. The factor 2 t arises because 
when a bond enters a previously unvisited dimension, the bond may be 
placed in either direction. The l? factor appears because the I dimensions 
may be chosen in any order. These considerations imply that the o (t) must . c  n ,  m 

be positive integers. The quantity [2q? (J)] can be alternative written as 
q(q-  2 ) ( q -  4 ) . . .  [q - ( 2 / -  2)]. 

For  given n and m, the coefficients p ( ~  may be obtained from the par- 
tition functions {C,,m} in d =  1, 2,..., n by just inverting Eq. (5) if the latter 
functions are known exactly. This is possible because the o <t) are inde- r n ,  m 

pendent of d and the combinatorial factors (J) are linearly independent. In 
fact, this information is redundant, and, as later shown, enumeration data 
are required only for dimensions through d =  n/2 I d =  (n + 1)/2] for n even 
[-n odd].  Table I presents exact enumeration results for the total number of 
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Fig. 2. Configurations of a three-segment chain: Starting at a given lattice site there are two 
configurations (a) that fully extend in one dimension, as the rods can be oriented in either 
direction. There are 3 • (4 x 2) no-contact configurations spanning two dimensions because 
the first bond in bl and b2 (b3) has four choices, the second (third) has two, and the third 
(second) segment has just one choice. The number of configurations (c) that span three 
dimensions is 6 x 4 • 2, as all bonds are placed in mutually orthogonal directions. There are 
4 x 2 one-contact, two-dimensional configurations (d), as the first bond has four choices, the 
second only has two because it must be orthogonal to the first one, and the third bond has 
just one choice to produce the contact. 

conf igura t ions  C,,m for chains of n l inks with m neares t -ne ighbor  contacts  
(m = 0 ,  1, 2,...) in d =  2-6  for n ~< 11. F o r  convenience,  Table  I also provides  
the n -bond  S A W  par t i t ion  funct ion c S A W =  Cn( t /=  I)  and  the number  
C y  RRw of n-step nonreversa l  r a n d o m  walks  

c N R R W  = q ~ , - 1 ,  n = 1, 2, 3,... (6) 

The  values for some of the {p ( l~ )  are ob ta ined  by simple count ing  

arguments .  F o r  example ,  the number  of one-d imens iona l  fully ex tended  con- 
f igurat ions  for an n -bond  chain  is 2d, which equals  the number  of  poss ible  
o r ien ta t ions  for the first bond ,  as the d i rec t ion  of the o thers  is then deter-  
mined.  This  gives Pn, o-~l)= 1. Similarly,  the n u m b e r  of fully ex tended  zero-  
con tac t  conf igura t ions  in d =  n d imens ions  is ( 2 d ) ( 2 d - 2 ) ( 2 d - 4 ) ( 2 d - 6 ) . - - 2 ,  
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since, once the direction of the first bond is specified, the subsequent ones 
must be in directions orthogonal to all previous bonds. This produces 
p(,,I 1. Similar arguments may be employed for cases with m contacts 
( m  = 1, 2 ,  3,...). It is clear that there must be sufficient chain folding to 
produce contacts. For example, extended one-dimensional chains cannot 
have contacts. These facts are summarized by the relations 

p ( l ) _  ,,(,I 1 (7a) n,O - -  / "  n , O  = 

p(a) O, O ( n - m + l ) ~ n ( n - m + 2 )  _(n) O, = ,,.., = .-,,.,,, - r , , , , , ,  . . . . .  p,, , , , ,  = m 1, 2, . . .  ( 7 b )  

Table II provides the computed {p(~} for all m with n (and l) ~<11 
as determined from (5) and Table I with the assumptions discussed at the 
end of Section4. The fact that the ~'n (z) } must be positive integers 
provides a very useful check of the enumeration data. In addition, direct 
enumeration through d =  8 has checked the consistency of our scheme. We 
stress that the above result applies to any d. As discussed by Baker and 
Benofy, (23) this analytic continuation is the same as that of the 4 -  d expan- 
sions in the renormalization group theory. (24) It is interesting to compare 

Table il. Coefficients ~(/) of Eq. (5) for All m wi th  n and/~<11 /~n,rn 

m 0 1 2 3 4 5 6 7 8 9 
n 

/ = 2  

3 3 
4 8 
5 20 
6 49 
7 117 
8 280 
9 665 

10 1583 
11 3742 

/ = 3  

4 7 
5 36 
6 168 
7 736 
8 3151 
9 13,190 

10 54,938 
11 226,597 

1 
4 

11 4 
32 16 
92 43 19 

254 134 66 5 
672 425 173 98 

1778 1229 576 298 48 
4622 3450 1944 803 444 

2 
16 4 
96 36 4 

510 227 84 0 3 
2558 1312 580 94 18 

12,282 7153 3424 1315 160 
57,498 37 ,244  19,646 8443 2412 

263,421 187,704 108,818 50,333 21,843 

31 

82 
506 

5357 
96 

1964 0 73 
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Table II. (Continued) 

m 
0 1 2 3 4 5 6 7 8 9 

n 

l = 4  

5 13 3 
6 114 44 9 
7 849 441 137 28 
8 5842 3720 1465 456 47 6 
9 38,174 2 8 , 6 3 0  13,358 5004 1354 147 

10 2 4 2 , 7 3 7  208,356 110,580 47 ,604  16,015 3590 
41 

646 96 
11 1,511,046 1,458,501 863,574 415,400 160,492 54,555 11,490 3213 222 73 

/=5  

6 21 4 
7 282 94 15 
8 3102 1418 367 60 
9 30,583 17,413 5897 1495 211 9 

10 2 8 2 , 3 6 8  190,280 77 ,350  24,620 5693 746 88 
11 2,494,567 1,931,183 903,670 336,799 98,076 23,300 3411 585 

/ = 6  

7 31 
8 592 
9 9019 

10 120,668 
11 1,486,799 

l = 7  

8 43 
9 1108 

10 22,312 
11 388,271 

/ = 8  

9 57 
10 1906 
11 48,993 

/ = 9  

10 73 
11 3074 

/=10 

11 91 

5 
172 22 

3643 792 101 
61,236 17,790 3700 439 12 

898,637 318,003 85 ,576  16,570 2171 141 

6 
284 30 

8036 1490 152 
176,875 44,570 7711 743 15 

7 
436 39 

15,881 2551 214 

8 
634 49 
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Fig. 3. The number of configurations of an ll-bond chain Cll as a function of the spatial 
dimensionality d of the hypercubic lattice for SAWs, NAWs, and 0' chains. C1~ of a NRRW 
is quite close to that of a 0' chain, so we also present the difference AC~= C~1(0')- 
Cll(NRRW). 

Eq. (5) with the number  of configurations for a simple r andom walk (RW) 
of  n steps as a function of d. The R W  yields the simple power-law behavior  
Cff w =q" .  Equat ions (2)-(5)  indicate that the part i t ion function of an 
n-step self-avoiding, self-interacting walk is also a polynomial  in d (or in q) 
of  degree n. Figure 3 presents C,  vs. d for a SAW, NAW,  0' chains, and 
N N R W  with n = 11. 

The results of  this section can be used in conjunct ion with the ratio or  
other extrapolat ion methods to extract long-chain limit information such 
as the effective critical index 7, the critical ampli tude A, and the free energy 
per segment .~  as functions of the contact  energy ~ in any dimension. This 
is the subject of a for thcoming work. (26) Alternatively, our  results may be 
used to generate a d -1  expansion for some of  these quantities, and this is 
described in the next sections. 

3. ON T H E n  D E P E N D E N C E  OF T H E  P A R T I T I O N  F U N C T I O N  C .  

Equat ions  (2) and (5) are now recast in a manner  that leads naturally 
to d -1 expansions of  polymer  properties for anyn. In fact, forms for 
{C,,(t/)} are int roduced that  are valid for any n and that are exact for 
integer n with n ~< 11. 
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The n-bond partition functions { C,(tl)} are polynomials in d of degree 
n as indicated by Eqs. (2) and (5). Section 2 and Table II express these 
polynomials in terms of the quantities [2q! (~)], with l =  1, 2 ..... n. We 
now expand the combinatorial factors and rewrite them in terms of qa ~, 
l = 0 ,  1, 2,..., n - 1 .  This choice of variables is suited for describing the 
packing of dilute self-avoiding walks and was used by Fisher and Gaunt. (17) 
An alternative choice is to expand C, in terms of qt, l = 1, 2 ..... n, the form 
employed by Freed and co-workers (~3'14) in the treatment of many dense 
polymer properties and by Nemirovsky and co-workers (15'~6) in work on 
dilute polymers. Define the Mayer f -bond energy as (2'3) 

f =  tl - 1 = exp( -~ /kT)  - 1 (8) 

Then Eqs. (4) are readily rewritten as 

C,,=qa"-l[l+aj(n-1)O(n-1)+a2(n-2)O(n-2)],  n =  1,2,3 (9) 

a I =0 ,  a2 = f ( a  -1 - a  -2) (9a) 

where O(x) is the Heaviside function and is required to combine Eqs. (4a) 
to (4c) in a single compact equation. Similarly, using Eqs. (2), (5), and 
Table II makes it possible to reexpress Cn(tl) for n ~< 11 as 

C,(f)=qa n-11 l+ ~ (n-i)  O(n-i)a,(f)] (10) 
i ~ l  

It should be possible to prove by induction that Eq. (10) holds for any n. 
The functions at(f) are polynomials in f of degree /max, i.e., 

imax 

a, = ~ ai.l f '  (11) 
l = 0  

where /max is the maximum possible number of contacts of a ( i+  1)-bond 
chain in dimension d =  ( i+  1)/2 [ ( i + 2 ) / 2 ) ]  for i odd [even]. The {a~,t} 
are functions of ~-1 and are presented in the Appendix. When ~ =  1 
( d =  1), all coefficients {ai} with i =  1, 2,... vanish. This is as expected since 
in d =  1, C,(f)=q=2 for all n and f. Thus, this condition serves as 
another useful check on the computed coefficients. 

We stress that Eq. (10) summarizes an enormous amount of informa- 
tion: all the material contained in Table II and Eq. (5). Hence it produces 
the exact partition functions for chains through 11 bonds in any dimension 
and for any interaction energy ~. (This includes SAWs, NAWs, and theta 
chains as special limits.) Figure 4 exhibits C, as function of n for a SAW, 
a NAW, a O' chain, and an N R R W  in d = 3  (a sc lattice) with 2~<n~< 11. 
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Fig. 4. The n dependence of the n-segment chain partition function C~ for SAWs, NAWs, 
and 0' chains on a sc lattice, We define ACn = C.(O') - C.(NRRW). 

Clearly, since Eq. (10) contains the step function, the continuous function 
C, vs. n has a small discontinuity in its first derivative at integer n. 
(However, the discontinuities are so small that they are imperceptible in 
Fig. 4.) 

The large-n limit of (10) provides the necessary ingredients for a 1/d 

expansion of the chain free energy as discussed in the following section. To 
understand how the short-chain expression (10) may be extended to a form 
valid for large n, we now use Eqs. (A1)-(A10) to analyze the structure of 
individual contributions to the n-bond chain partition function C,. Only a~ 
and a2 produce contributions of order cr-1, and these are in the form 

contributions from ax through az = ( n -  2) ~ - i f  (12a) 

Similarly, only a2, a3, and a 4 give contributions linear in f and of order 
a 2 as follows: 

contributions from a 2 through a 4 

= { - ( n - 3 ) +  [ - ( n - 2 ) - 2 ( n - 3 ) + 4 ( n - 4 ) T f }  a -2  

= [ - ( n - 3 ) +  ( n - S ) f ]  a -2 (12b) 

Although contributions proport ional  to f2 and of order a -2 exist for 
all ai ( i > 3 ) ,  a very simple structure emerges upon inspection of 
Eqs. (A1)-(A10), namely, all ai for i~>5 contain the term ( n - i ) f 2 a  -2. 
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Hence, assuming this holds for all i, the full a-2f2 dependence of C, for all 
n is obtained by summing all these contributions to ai, 

contributions from all {ai}, i > 3 

= [ 4 ( n - 4 ) + ( n - 5 ) + ( n - 6 ) + ( n - 7 ) +  . . . ]a  2f2 

= [ (n+3)(n-4) /2]  a 2f2 (12c) 

Equations (10) and (12) generate Cn through second order in a -1 as 

Cn=qa ~ l { l + ( n - 2 ) f a - ~ + [ ( 3 - n ) + ( n - 8 ) f  

+ ( n + 3 ) ( n - 4 ) f 2 / 2 ]  a - 2 +  -.-} (13) 

a form which is valid for n > 4. Thus, Eq. (13) is expected to apply for the 
large-n limit. After inspecting Eqs. (A1)-(A10), it appears that similar 
arguments may be used to obtain all contributions to C, through order 
0 .-5 . These assumptions are supported in the next section by using results 
from the lattice cluster theory, which permits the direct determination of a 
d-~ expansion for the chain free energy. 

4. T H E  d -1 E X P A N S I O N  OF T H E  P A R T I T I O N  F U N C T I O N  

The lattice cluster theory (13 16) (LCT) has been developed extensively 
by Freed and co-workers to study a variety of thermodynamic properties 
of dense polymer solutions, melts, and blends. This theory also considers 
the standard lattice model of polymers on a d-dimensional hypercubic lat- 
tice, and produces lid expansions for thermodynamic properties. The LCT 
begins with an exact representation of the chain partition function and then 
expands it about a zeroth-order Flory approximation (which is exact for 
d = oe ). Most of the LCT work focuses on the many-chain thermodynamic 
limit of n finite and N ~ 0% p ~ 0% 0 < q~ = p(n + 1)IN<<. 1, with N the 
number of lattice sites, p the number of chains, and 4~ the polymer volume 
fraction. (13'~4) Nemirovsky and Coutinho-Filho (~5) have extended the 
method to athermal chains in the infinite dilution limit (i.e., a single dense 
self-avoiding walk), and recently NemirovskyetalY 6~ have generalized 
these single-chain results to macromolecules with nearest-neighbor contact 
interactions and to self-avoiding, self-interacting trees of any specified 
topology. Although the previous applications of the LCT (13 16) focus only 
on the thermodynamic limit of large p and N (n and N) for dense (dilute) 
polymers, the general formulation applies to finite systems and thereby 
provides exact information for small systems such as short chains at infinite 
dilution. 
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The lattice cluster theory suggests that the partition function Cn(f)  
has the exact structure 

I 1 C n = q #  ~-1 1 +  ~ A j ( f )  a j (14) 
j ~ l  

where the n-dependent coefficients A j ( f )  are polynomials in f of degree 

J m a x ,  
Jmax 

Aj= ~ A / , k f  k (14a) 
k = 0  

and where Jmax is the maximum power of f in the coefficient of a -j  in the 
polynomials {ai}, i =  1, 2,..., 2 j+  1 of the Appendix. For example, Jmax = 1, 
2, 3, 5, 6, 7, 9,..., for j = 1, 2, 3, 4, 5, 6, 7,..., respectively. Configurations 
with J-----Jmax are the only ones that are relevant in the large-f limit (the 
collapsed chain). The Aj are conveniently grouped in cumulan't clusters, 

Jmax 

(Aj)c= ~ (Aj .k)cf  k 
k = 0  

that naturally appear when expanding log Cn(f),  which is (minus) the 
system's free energy, 

n 1 

l o g C . ( f ) = l o g q + ( n - 1 ) l o g a +  ~ [ A j ( f ) ] c a  - j  (15) 
j = l  

where, for example, 

(A3,3)c = A3,3 - Al,~A2,2 + (1/3)(A1,1) 3 (16a) 

( A 4 , 2 )  c = M 4 , 2  _ (1/2)(A 2.1 )2  - -  A 1 , 0 A 3 , 2  - -  A 1 , 1 A 3 , 1  

+ (Al,o) 2 A2,2 + (A~,I) 2 A2,o (16b) 

Obviously, the (Aj, z.)c are functions of n. An important feature suggested by 
the lattice cluster theory is that long enough chains (as defined below) yield 
the clusters (Aj.k)c as linear functions of  n for  all n, 

_ (1) N(0)  (Aj, k)c -- ~j, kn + ~j,k (17) 

with ~'(1) and ,,(o) real numbers that are determined here from the enumera- ~j,k ~j,k 
tion data. For example, taking the logarithm of (13) and expanding in 
powers of a ~ yields 

log C . = l o g  qa ~-1 + ( n - 2 ) f a  1 

+ [ ( 3 - - n ) + ( n - - 8 ) f + ( 3 n - - 1 6 ) f 2 / 2 ] a  -2 (18) 

Notice that Eq. (18) has an exact cancelation of the n 2 contribution to the 
partition function (13). In fact, the lineality in n of (17) for n large is just 
a consequence of the extensively of the free energy in the thermodynamic 

822/67/5~6-17 
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limit of infinitely long chains. However, the LCT suggests that this lineality 
already holds for chains of n > 2 j -  1 for k > 0 (or n > 2 j -  2 for k = 0). 
These conclusions are also strongly supported by the direct enumeration 
data. Similar inferences are suggested by Fisher and Gaun(17) in their 
SAW work. This interesting result enables us to construct a lid expansion 
for the free energy. 

The determination of the asymptotic form of the coefficients e~,~ for all 
k > 0 requires chains of at least 2j bonds. Since for given j there are two 
numbers ~,(1) and ~,(o) to be determined in order to produce two equations ~j,k ~j,k 
for these two unknowns, it suffices to have information for walks of 2j and 
2j+ 1 steps. (Of course, longer chains could also be used.) The coefficient 
~j,o (for athermal SAWs) may be obtained from data of only 2 j -  1 and 2j 
segments. For example, we evaluate (Al,o)c using the C l ( f = 0 )  and 
Q ( f = 0 )  given in the previous section together with Eqs.(14), (16), 
and (17). Similarly, to determine (A~,I),., we employ information from C2 
and C3. Of course the form in Eq. (17) is valid for any n larger than 2j for 
k > 0 or larger than 2 j -  1 for k = 0. For example, the values of ~1,~ (k = 0 
and 1) obtained using data for chains with n = 1-3 suffice to predict Al(f) 
for all n larger than 3. This provides a very useful check for the results 
given in Section 3 and on the consistency of the calculational scheme 
presented in this work. This procedure enables the computation of the 
cumulants in Table III. 

The free energy of the n-bond self-avoiding walk with nearest-neighbor 
interactions is expressed by (15) and Table III as a lid expansion by using 
information gathered for short walks. However, the important point here is 
that this expansion is now also valid in the limit of large n. Therefore, 
Eq. (15) may be used to extract information concerning the asymptotic 
n ~ oe behavior of these walks. 

The above discussion should already clarify the minimum enumeration 
data that is required to produce the d I expansion for any polymer 
property. Equation (14) implies that the specification of the n-bond parti- 

Table III. Cluster Coefficients (As, k)c of (17) for All k w i t h  j up to 5 

k 
0 1 2 3 4 5 6 

J 

1 0 n-2 
2 3-n n-8  (3n-16)/2 
3 13-2n 7n-64 11n-91 
4 (205-23n)/2 35n-538 117n/2-827 
5 856-64n 250n-5308 251n-6477 

(16n-128)/3 
56n-686 103n/4-263 3n-18 

532n-8636 379n 5559 (626n-8582)/5 14n-148 
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tion function requires determination of n - I  polynomials in f,  {Aj(f) for 
j = 1 to n - 1 }, each of degree Jma~' For example, to obtain C2(f) for all 
dimensions d we only need A l(f), which, in turn, is determined from direct 
enumeration of a two-bond chain in only d = 1. Calculation of C3(f) for all 
d requires Al(f)  and A2(f), so it is only necessary to perform the enumera- 
tion of three-bond chains in d=  1 and d=2.  Similarly, C4(r/) [Cs(q) ] for 
all d may be evaluated from At(f) to A 3 ( f )  [Al(f)  to A4(f)], which in 
turn are obtained from enumeration of four-bond (five-bond) chains in 
d=  1 through d=  3 (d= 1 to d=  4) to determine the three (four) unknown 
c~'s of (17). However, the above discussion indicates that the n = 2  and 3 
results already provide the full ~-1 contribution to the partition function 
for longer chains. This, in turn, reduces the number of unknowns for C4(tl) 
[Cs(t/)] to two (three). Hence C4(tl) [Cs(q)] requires enumeration in d=  1 
and d = 2  (d= 1 to d=3).  Similarly, the calculation of C6(rl) [Cv01)] 
involves only {Ai(f) } for j = l - 5  ( j = l - 6 )  to deduce the five (six) 
unknowns. Again, shorter-chain information provides the full 0--1 and 0--2 
dependence, reducing the number of unknowns by two and then only 
requiring enumeration data in d=  1 to d=  3 (d= 1 to d=  4). 

In general, in order to calculate the exact value of some polymer 
property for chains of 2j or 2 j -  1 bonds for all d, it is necessary to perform 
enumeration for chains with the same number of bonds in dimensions d=  1 
through j. Furthermore, the calculation of the j th  order within the d-I  
expansion can be accomplished with only enumeration data for chains with 
n up to 2j+ 1 in dimensions up to d=j+ 1. [For athermal walks (SAWs), 
chains with n up to 2j suffice.] These general results considerably reduce 
the number of enumerations required to generate C,(f) as simultaneous 
functions of n, d, and f ,  as well as to produce the d-1 expansions. Further- 
more, because a large amount of enumeration data in higher d may be 
predicted from that in lower d, there are a large number of internal 
consistency checks. 

5, E X P A N S I O N  IN d -1 FOR p A N D  AS F U N C T I O N S  OF f 

Using Eqs. (15) and Table IlI together with the asymptotic form of the 
partition function (3), we obtain the connectivity constant # through fifth 
order in 0--1 as 

log/.t = log a + f0-- 1 .+. ( _ 1 + f +  3 /2 f  2) 0 --2 -~- ( --2 + 7f 

+ l 1 f2 + 16/3f3) 0--3 + (-23/2 + 35f+ 117/2f 2 

+ 56f3 + 103/4 f4 + 3fs) 0--4 + ( - 6 4  + 250f+ 251f 2 

+ 532f3 + 379f4 + 626/5 f5 + 14f6) 0--5 + ... (19) 
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where the coefficients of each 6 j contain terms to all order in f.  It  is well 
known that the critical indices assume their classical (mean field) values 
above the critical dimension d c. The critical dimension is believed to be 
d =  4 for SAWs, and numerical evidence for this is indicated in another 
work devoted to the exponent v. Combining (3) and the results of Section 4 
produces the d-~ expansion of the free energy amplitude A, 

l o g A = l o g ( l + 6  1 ) - 2 f 6  1 + ( 3 - 8 f - 8 f 2 ) 6  2 

+ (13 - 6 4 f -  91f 2 - 128/3 f 3) a -3 + (205/2 - 538f 

- 827f z - 686f 3 - 263f 4 - 183 "5) 6 -4 + (856 - 5308f 

_6477f2 8636f3_5559f4_8582/5f5 148f6)6 5+. . .  (20) 

again with coefficients of each 6 - ;  evaluated to all orders in f.  
It  is interesting to consider limiting cases of our general formulas (19) 

and (20) after exponentiation and expansion in 6 -1. The f = 0  limit 
reproduces the results of Fisher and Gaunt  ~17) and of Gaunt  (27) for #saw 
and AsAw, respectively, 

#SAW = 6(1 -- 6 -2 -- 26 -3 -- 116 -4 -- 626 -5 + ''') (21a) 

ASAW = (1 + a - l ) ( 1  + 3a -2  + 13a-3 + 107a-4 + 8956-s  + -. .)  (21b) 

Hara  and Slade (28~ study SAWs in five or more dimensions. In particular, 
at d = 5  they derive the bounds 1 ~<AsAw~< 1.493 and gSAW>8.82128 
which are satisfied by (21) (see Tables IV and V). 

Table IV. Connectivity Constants of SAWs, NAWs, and 0' Chains on 
d-Dimensional Hypercubic Lattices 

]'/SAW ~2NAW #0' 

d Extrap Series Extrap Series Extrap Series 

2 2.638 2.556 2.314 1.833 2.797 2,944 
3 4.683 4.676 4.065 3.808 4.899 4,948 
4 6.775 6.771 5.92 5.822 6.96 6,967 
5 8.835 8.840 7.94 7.891 8.98 8.981 
6 10.880 10.880 9.94 9.941 10.986 10.988 
7 12,900 12.904 11.96 11.963 12.991 12.992 
8 14.920 14.920 13.97 13.975 14.994 14,994 
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Table V. Free Energy Amplitudes of SAWs, NAWs, and 9' Cha ins  on 
d-Dimensional Hypercubic Lattices 

ASAW ANAW Ao, 

d Extrap Series Extrap Series Extrap Series 

4 1.268 1.282 1.643 1.783 1.187 1.190 
5 1.180 1.199 1.471 1.583 1.134 1.140 
6 1.133 1.143 1.363 1.422 1.105 1.108 
7 1.105 1.109 1.293 1.319 1.086 1.088 
8 1.087 1.089 1.245 1.258 1.073 1.074 

The NAW ( f =  - 1 )  limit produces 

#Naw = 0.(1 - 0.-i _ 30.-3 _ 18o.-4 _ 3060.-s + .. ~ (22a) 

ANA w = (1 + 0.-1)(1 4- 20. -1 + 56 -2 + 36a -3 + 3230.-4 

+ 49980. -5 + ..-) (22b) 

Gaunt eta/. (2~) obtain the first three terms of (22a). The first correction to 
the NAW connectivity constant could have been guessed as 0 ( 1 -  0.-1)= 
q -  2, which is the number of choices per segment of a NAW for high d. 
Finally, a 0' chain with f = ~r-l yields 

y 0 , = 0 . ( 1 - 0 . - 3  30. 4_  180.-5+ .. .)  (23a) 

A0, = (1 + a - l ) (1  + 0.-2 + 50.-3 + 31~r-4 + 2320.-5 + -..) (23b) 

The (1 + 0.-1) prefactor in Eqs. (21b), (22b), and (23b) corresponds to the 
Bethe approximation. All the above series appear to be asymptotic~23); 
hence results for low dimensions should be treated with care. Either 
reasonable truncations or appropriate resummation techniques may be 
required for low d. Tables IV and V present, respectively, the connectivity 
constants {/~} in d = 2 - 8  and amplitudes {A} in 4~d~<8 of SAWs, 
NAWs, and 0' chain as calculated from Eqs. (21)-(23) following Fisher by 
retaining terms through order 0.-a plus one-half of the following term, 
except for d =  5-8, where all terms are used. (iv) Also, comparison is made 
with results ~z6) obtained by numerical extrapolation of the enumeration 
data. Figure 5 displays In/~ as a function of the dimension for SAWs, 
NAWs, and 0' chains obtained by both d-1 expansions and series analysis. 
The agreement between the two methods is quite good above d =  4. 
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Fig. 5. The d dependence of the logarithm of the connectivity constant. The circles, triangles, 
and squares are from series analysis (26) for SAWs, NAWs, and 0' chains, respectively. The 
curves are from the fifth-order d-~ expansion. 

6. C O N C L U S I O N S  

This work combines several ingredients, given separately in the 
literature, to evaluate, for first time, the exact n-bond partition function Cn 
of a self-avoiding, self-interacting chain on a d-dimensional hypercubic 
lattice for any d with n ~< 11 segments. This is done using computer 
enumeration data in dimensions d only through 6, the theoretically 
predicted analytic structure for Cn, and some relations suggested by the 
lattice cluster theory and strongly supported by the numerical data. The 
exact partition function for short chains in any d and for any e can be 
extrapolated numerically to the large-n limit using, for example, the ratio 
method to extract the asymptotic critical index 7, the connectivity constant 
/~, and the free energy amplitude A for all dimensions. All these quantities 
may be evaluated for any e, including SAWs, NAWs, theta, and collapsed 
chains as particular cases. This analysis will be presented separately. 

Alternatively, the exact short-chain n-bond partition function may be 
used to generate a d 1 expansion of the free energy that is valid in the 
large-n limit. This is illustrated in Section 5, where we derive a d-~ expan- 
sion for the e-dependent chain connectivity constant # through fifth order. 
A d -1 expansion for the e-dependent free energy amplitude A is also 
derived to O(d -5) for d larger than the critical dimension de. The general 
results for the e-dependent /~ and A are specialized to the SAW (e =0), 
NAW (e=oo), and 0' chain ( e ~ - a  -1) limits. The self-avoiding walk 
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growth constant and amplitude agree, respectively, with those of Fisher 
and Gaunt (17~ and of Gaunt. (27) Ref. 21 derives the d-1 expansion for/~NAW 
through third order which is in agreement with ours evaluated through 
fifth. The remaining e dependence is derived here for first time. 

The method developed here is very useful to produce a long d-1 series 
in the large-n limit or to produce the exact partition function of short 
chains in any d by using only computer enumeration data for short chains 
in lower d. In fact, the computer data replace the time-consuming task of 
evaluating many-body diagrams. This technique may be extended to con- 
sider many lattice models and properties. For example, a future paper will 
consider the generalization to calculate the mean-square polymer 
end-to-end distance. ~29~ Further extensions should be possible to study 
models of semiflexible and rigid chains, ~3~ which are of great relevance to 
understanding liquid crystals, the glass transition, models of polymer 
chains terminally attached to an interface, confined polymers, and dense 
walks. We believe that future applications of the method may include the 
statistics of self-avoiding surfaces, critical phenomena, and disordered 
systems, such as spin glasses. (31~ 

APPENDIX. THE FUNCTIONS ai(f) OF EQ. (10) 

Proceeding as indicated in Section3, the {ai} 
determined as 

a1=O 

a 2 =  

a 3 

a 4 = 

a 5 -~- 

a 6 = 

for i =  1-10 are 

(a 1 __ a - 2 ) f  

( - a -~+~  3)(1 +2f) 
(~-3 _ a 4) + (4~-2 _ 12o_-3 + 8 ~ - 4 ) ( f +  f2) 

( - 4 a  -3 + 13o --4 - 90- 5) + ( _  16cr-3 + 50a-4 _ 3 4 a - 5 ) f  

+ ( 0 - - 2 - - 9 0 " - 3 +  1 5 0 - - 4 - - 7 0 - - 5 ) f  2 

+ ( 4 a  - 3  - -  160- - 4  + 120--5)f 3 

(7a -4 _ 220- -5 + 15o.-6) 

+ (250. -3 -- 1700. -4 + 3770- -5 _ 2320.-6)f 

+ (tr-2+350. 3--2440--4+5210.-5--313o--6)f2 

+ (200. - 3 -  1060.-4+ 183cr-5--970.-6)f 3 

+ ( 1 5 0 . - 4 - - 6 0 0 . - 5 + 4 5 0 . - 6 ) f 4 +  (30. 4 120 . -5+9a-6) f5  

(A!) 

(A2) 

(A3) 

(A4) 

(A5) 

(A6) 
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a 7 : ( - -260  - . 4  + 1820--s _ 4020--6 + 2460- 7) 

+ (--20-  - 3 -  1 1 8 o - 4 + 7 9 8 o "  - 5 -  16720- 6- t - -9940--7) f  

Ai - ( 0 -  - 2  @ 20.--3 -- 1060---4 + 342a--5 __ 2850---6 -k- 460- - -7) f2  

+ (80- 3 + 40- 4__ 4420---S + 13680- 6__ 9380---7)f3 

+ (470- - 4  -- 389O . - 5  + 9500---6 __ 6 0 8 0 - - 7 ) f 4  

+ ( -- 120---S + 480---6 __ 360--- 7 ) fS  (A7)  

a8 = (0--4 + 480- - s  _ 3230- 6 + 6680--7 _ 3940--8)  

+ ( _ 2 0 - - 3 + 2 4 2 0 -  4 _ 2 6 9 9 0 -  5 + 1 1 6 2 2 0 - - 6  207310--7 

+ 1 1 5 6 8 0 - - 8 ) f +  (0- 2 + 20.-3 + 3 5 7 0 - - 4 _  39980--s  

+ 158310--6 _ 259760--7 + 1 3 7 8 3 o . - 8 ) f 2  

+ (90- -3  + 2780- - 4  --  2637a  - s  + 80330 - - 6  -- 98400- -7  + 41570- 8 ) f3  

+ (1170- - 4  -- 4340- -5  -- 10100- -6  + 50700- - 7  -- 3 7 4 3 0 - - 8 ) f 4  

+ (3090- 5 _ 22340--6 + 49190- 7 _ 2 9 9 4 o - - 8 ) f 5  

+ (410--5 _ 2870--  6 + 6150- - - 7  - -  3690- -8)f6 (AS) 

a9 : (0--4 _ 2440--5 + 27930--6 _ 119200--7 + 209770--8 

_ 1 1 5 0 7 0 - _ 9 ) + ( _ 2 0 - - 3  60- 4 1 1 0 2 0 - - 5 +  121440--6 

477600--7 + 781600--8 _ 4 1 4 3 4 0 - - 9 ) f  

(0--2 + 20--3 _ 80--4 _ 10560--5 + 49860--6 + 1010--7 

245440- - 8  + 2 0 5 1 8 0 - - 9 ) f ~  

(100- -3  + 400- 4 - -  2200--5 _ 82100--6 

554760- - 7 -  1152220- -8  + 681260- 9)f3 
(640--4 + 5430--5 _ 111130--6 + 498500- -7  _ 844000- -8  

4 5 0 5 6 0 - - 9 ) f  4 

(4400--5 _ 38540- 6 + 105600--7 _ 9690o.-8 + 2 5 4 4 0 - - 9 ) f 5  

(60- - s  + 4840- - 6  - 4346o  -7  + 108520- 8 _ 6 9 9 6 0 - - 9 ) f 6  

(960- -6  - 7680- -7  + 18240- -8  - 1 1 5 2 0 - - 9 ) f  7 (A9)  

_ 4 + 4 0 - 5 + 4 2 0 0 - - 6 4 6 5 9 0 -  7 +  181510--8 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

alo = ( 0 -  

294220- 9 +  15505o- -1o )+  (--20- 3 - - 6 0 - - 4 + 2 8 1 1 0 -  5 - - 4 6 3 4 9 0 - 6  



Lattice Model of Dilute Polymers 1107 

+ 317152a - 7 -  1 0 5 6 9 8 3 ~ - s +  1623648a - 9 -  8 4 0 2 7 1 a - l ~  

+ (a  z + 2 0 - 3 _ l l a - 4 + 4 3 8 4 ~ - 5 _ 6 7 1 7 1 a - 6 + 4 0 1 4 8 0  -7  

- I151683a - s  + 15438490 9 - -  730851a -~o ) f2  

+ (11~ -3  + 4 3 a  4@ 37520 5 - 5 0 4 8 3 ~  6 

+ 222335~ - 7 -  3 9 0 1 8 7 ~ - s +  209859~ -9  + 4670a lo)f3  

+ (76~-4  + 2 1 6 4 ~ - 5 _  1 7 9 6 3 ~ - 6 1 5 6 4 o  7 + 2 9 3 8 5 8 a - s  

- 724946a -9  + 4 4 8 3 7 5 ~ - 1 ~  4 

+ (778~ -5  + 23740 6 - -  78241a -7  + 3557280 s 

- 5 9 4 5 3 5 a - 9 +  3 1 3 8 9 6 ~ - 1 ~  5 

+ (60 -5 + 3874~ -6 - 3 4 4 9 0 a  -7 + 99245~ - s  

- 1 0 4 2 6 5 ~ - 9 +  3 5 6 3 0 a - l ~  6 

+ (393~ -6  - 207a -7  - 17299a - s  + 56167a 9 _  3 9 0 5 4 a - l o ) f 7  

+ (879a - 7 -  7254a s + 1 7 5 8 9 a - 9 _  11214a - lO) fS  

+ (73a -7 - 5 8 4 a - 8 +  13870 -9  _ 8 7 6 o - l o ) f  9 (al0) 
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